IT News

Explore the MakoLogics IT News for valuable insights and thought leadership on industry best practices in managed IT services and enterprise security updates.

The face of tomorrow’s cybercrime: Deepfake ransomware explained

While many countries are beginning to ease up on their respective pandemic lock downs—which, in turn, also means that everyone will soon ease into a life that is not quite post-COVID-19—we find ourselves once more on the cusp of change, an outlook that makes some feel anxious and others hopeful.

But for forward-looking security experts, there are some futures they dread and, frankly, would rather un-see. This is because, in the underground market and forums, there is sustained interest in ransomware and the surprisingly cheap offerings of deepfake services to match every cyber miscreant’s campaign of choice. Mash them together and what do you have? Deepfake ransomware.

Cybercrime waiting to happen

News about ransomware continues to be relevant, especially for businesses, its consistent targets. It seems that organizations of all sizes cannot cope, especially now that perimeters have been essentially decimated by remote work. And if you have been paying attention about how cybercrime gangs operate, they don’t keep using the same malicious tools for long. Most of the time, these tools evolve in time and with the crime.

So can you imagine a world where deepfake ransomware is a thing?

“Deepfake ransomware”? Never heard of it.

Granted that this compound word is quite new, the two terms it’s made of are not. But for the sake of review, let’s look at each of these terms so we can get an idea of how they could be related and why they could present a frightening future in cybercrime.

Deepfakes are the manipulation of media, may they be still images and/or videos accompanied by voice, using artificial intelligence (AI), resulting in a believable composite that is challenging to the naked eye and/or software. We’ve touched on the topic of deepfakes in several of our articles here on the Labs blog, including the possibility of such technology being used in scam campaigns.

Ransomware, on the other hand, is malware that holds the victim’s files hostage, either by encrypting important files or locking victims out of certain computer features to prevent them from performing remediation steps, until a ransom is paid.

Combining these two suggests that deepfake tech can be used in ransomware campaigns or vice versa. This is feasible, albeit a bit of a mindbender. To help us understand the concept behind this weird intermarriage, several experts in the field have given us examples of how this concept may look like in practice.

To the best of our knowledge, the term “deepfake ransomware” was first publicly coined by Paul Andrei Bricman, though he opted with a slightly different construction. A student at the University of Groningen specializing in AI and co-founder of not-for-profit REAL (Registrul Educațional Alternativ), he went with the portmanteau “RansomFake” instead, declaring it “the lovechild of ransomware and deepfake.”

Bricman defined RansomFake as “a type of malicious software that automatically generates fake video, which shows the victim performing an incriminatory or intimate action and threatens to distribute it unless a ransom is paid.” Bricman goes on to suggest that the threat actor behind such a campaign would offer up their targets the option to permanently delete the video file after payment is received.

If something like this can be automated, you can bet that more bad actors with little to no background in programming will take interest in such a technology. In a recent report from Trend Micro, it is revealed that there is great interest in how deepfakes could be used for sextortion (or what they call “eWhoring”) or for bypassing authentication protocols that rely on image verification when using certain sites, such as dating sites.

This report also considers deepfake ransomware an emerging threat because it takes extortion-based ransomware to the next level. The scenario they presented is like Bricman’s: threat actor scrapes videos and voice samples of their target from publicly available websites to create a deepfake video—but sprinkling in certain elements inspired from ransomware, such as a countdown timer that lasts for 24-48 hours.

Deepfake ransomware could also happen this way: A threat actor creates deepfake video of their target. Takes screenshots of this video and, pretending to be a legitimate contact of their target, sends them the screenshots and a link to the supposed video that they can watch themselves if they are in doubt.

Curious and perhaps half-convinced, half-scared, the target then clicks the link, gets redirected to the short clip of themselves in a compromising state and all the while, ransomware is being downloaded onto their system. Or, the link may not lead to a purported video after all but to the auto-downloading and execution of a ransomware file. Remember that deepfakes cannot just manipulate videos and voices but still images as well.

This is not an unlikely scenario. In fact, some ransomware threat actor(s) already used a similar tactic back in 2015.

Thankfully, this level of extortion hasn’t been seen in the wild (yet). Nonetheless, the potential for this campaign to destroy a target’s reputation is exceedingly high. It doesn’t really matter whether a video of someone is real or doctored to look real. As humans, we tend to believe what we see, because if you can’t trust your own eyes, what can you trust?

I’m not going to be a likely target, am I?

Never assume you’re not a target. Those who do—individuals, groups, and organizations alike—eventually find themselves at the receiving end of an attack. Worse—they’re not prepared for it. It’s always better to be safe now than sorry in the end.

Is there a way to protect against deepfake ransomware?

For this particular campaign, patching software for vulnerability holes is not needed—although you should be doing this religiously anyway.

A way to counter deepfake ransomware is at the beginning: Do not give cybercriminals the material they need to create something destructive and hold you responsible for. By this we mean watch what you post on social media in general: selfies, group pictures, TikTok videos, and other images are all up for grabs. You should think long and hard about who you’re sharing your content with and where.

Do an audit of your current photos and videos online and who has access to them. Weed out public-facing photos as much as you can or set them to be viewed by certain groups in your pool of contacts. If they’re not photos you posted yourself, simply un-tag yourself, or ask your contact to take them down.

Many call this process of “tidying up” data detoxing, and indeed, it is one of the handful of steps to keep your digital footprint as minimal as possible. This is not only good for your privacy but also for your pocket and sanity.


If you want to read more, Mozilla wrote about it not so long ago here.


When it comes to dealing with messages from people within your network, whether you personally know them or not, if you have other means to reach out to them other than social media platform, do so to verify two things: [a] Are they the person you’re really talking to?, and [b] If they are, did they actually send you those private messages about a purported video of you floating around the web that they found somewhere?

Furthermore, always be suspect of links, especially those purportedly sent by someone you know. Here’s the thing: people are less likely to believe a stranger who is just “being nice” than someone they may know personally and is concerned about them. Cybercriminals know this, too. And they will do whatever they can to make you believe the scammery they’re attempting to pull on you.

Lastly, backup your files. Always.

The post The face of tomorrow’s cybercrime: Deepfake ransomware explained appeared first on Malwarebytes Labs.

Web skimmer hides within EXIF metadata, exfiltrates credit cards via image files

They say a picture is worth a thousand words. Threat actors must have remembered that as they devised yet another way to hide their credit card skimmer in order to evade detection.

When we first investigated this campaign, we thought it may be another one of those favicon tricks, which we had described in a previous blog. However, it turned out to be different and even more devious.

We found skimming code hidden within the metadata of an image file (a form of steganography) and surreptitiously loaded by compromised online stores. This scheme would not be complete without yet another interesting variation to exfiltrate stolen credit card data. Once again, criminals used the disguise of an image file to collect their loot.

During this research, we came across the source code for this skimmer which confirmed what we were seeing via client-side JavaScript. We also identified connections to other scripts based on various data points.

Skimmer hidden within EXIF metadata

The malicious code we detected was loaded from an online store running the WooCommerce plugin for WordPress. WooCommerce is increasingly being targeted by criminals, and for good reason, as it has a large market share.

hack
Figure 1: Malwarebytes showing a web block on a merchant site

Malwarebytes was already blocking a malicious domain called cddn[.]site that was triggered upon visiting this merchant’s website. Upon closer inspection we found that extraneous code had been appended to a legitimate script hosted by the merchant.

The offending code loads a favicon file from cddn[.]site/favicon.ico which turns out to be the same favicon used by the compromised store (a logo of their brand). This is an artifact of skimming code that’s been observed publicly and that we refer to as Google loop.

favicon loader
Figure 2: Legitimate JavaScript library injected with additional code

However, nothing else so far from this code indicates any kind of web skimming activity. All we have is JavaScript that loads a remote favicon file and appears to parse some data as well.

This is where things get interesting. We can see a field called ‘Copyright’ from which data is getting loaded. Attackers are using the Copyright metadata field of this image to load their web skimmer. Using an EXIF viewer, we can now see JavaScript code has been injected:

metadata
Figure 3: Metadata viewer revealing JavaScript code inside the Copyright tag

The abuse of image headers to hide malicious code is not new, but this is the first time we witnessed it with a credit car skimmer.

The presence of an eval is a sign that code is meant to be executed. We can also see that the malware authors have obfuscated it. An archive of this script can be found here.

obfu
Figure 4: A portion of the malicious JavaScript hidden inside the EXIF data

Skimmer exfiltrates data as an image

The initial malicious JavaScript (Figure 2) loads the skimming portion of the code from the favicon.ico (Figure 3) using an <img> tag, and specifically via the onerror event.

As with other skimmers, this one also grabs the content of the input fields where online shoppers are entering their name, billing address and credit card details. It encodes those using Base64 and then reverses that string.

JS POST
Figure 5: Same code loaded via an img tag revealing how stolen data is exfiltrated

It comes with a twist though, as it sends the collected data as an image file, via a POST request, as seen below:

stolen data
Figure 6: Example of a transaction that was grabbed by the skimmer

The threat actors probably decided to stick with the image theme to also conceal the exfiltrated data via the favicon.ico file.

Skimmer toolkit found in the open

We were able to get a copy of the skimmer toolkit’s source code which was zipped and exposed in the open directory of a compromised site. The gate.php file (also included in the zip) contains the skimmer’s entire logic, while other files are used as supporting libraries.

PHP source
Figure 7: The skimmer toolkit, left on a hacked site and containing the PHP source files

This shows us how the favicon.ico file is crafted with the injected JavaScript inside of the Copyright field. There are some other interesting artifacts as well, such as the Cache HTTP header and Created date for the image.

EXIF PHP
Figure 8: PHP source showing how the EXIF data is injected

The JavaScript code for the skimmer is obfuscated using the WiseLoop PHP JS Obfuscator library, in line with what we saw on the client-side.

wiseloop
Figure 9: WiseLoop PHP and JS obfuscator

Connections to other skimmers, Magecart group 9

Based on open source intelligence, we can find more details on how this skimmer may have evolved. An earlier version of this skimmer was found hosted at jqueryanalise[.]xyz (archive here). It lacks some obfuscation found in the more recent case we found, but the same core features, such as loading JavaScript via the Copyright field (metadata of an image file), exist.

maltego
Figure 10: Connecting skimmer domains and registrant emails

We also can connect this threat actor to another skimming script based on the registrant’s email (rotrnberg.s4715@gmail[.]com) for cddn[.]site. Two domains (cxizi[.]net and yzxi[.]net) share the same skimmer code which looks much more elaborate and does not appear to have much in common with the other two JavaScript pieces (archive here).

string ars
Figure 11: An artifact from the new skimmer

While debugging it, we can spot the string ‘ars’ within a URL path. That same string was seen being used in the first skimmer (see Figure), although it might very well just be a coincidence.

The data exfiltration is quite different too. While the content-type is an image again, this time we see a GET request where the stolen data is Base64 encoded only, and passed as a URL parameter instead.

metadata code
Figure 12: Data exfiltration for this more advanced skimmer

Finally, this skimmer may have ties with Magecart Group 9. Security researcher @AffableKraut pointed out that a domain (magentorates[.]com) using this EXIF metadata skimming technique has the same Bulgarian host, same registrar, and was registered within a week of magerates[.]com.

magecart metadata
Figure 13: A possible connection to Magecart group 9

Magerates[.]com is registered under newserf@mail.ru, which also has other skimmer domains, and in particular several used via another clever evasion technique in the form of WebSockets. This type of skimmer was tied to Magecart Group 9, originally disclosed by Yonathan Klijnsma .

Tracking digital skimmers is not an easy task these days, as there are many threat actors and countless variations of skimming scripts based off toolkits or that are completely custom.

We continue to track and report skimmers in an effort to protect online shoppers from this campaign and dozens of others.

Indicators of Compromise

EXIF skimmers

cddn[.]site
magentorates[.]com
pixasbay[.]com
lebs[.]site
bestcdnforbusiness[.]com
apilivechat[.]com
undecoveria[.]com
wosus[.]site

Older EXIF skimmer

jqueryanalise[.]xyz
jquery-analitycs[.]com

Skimmer #3

xciy[.]net
yxxi[.]net
cxizi[.]net
yzxi[.]net

Other skimmers

sonol[.]site
webtrans[.]site
koinweb[.]site
xoet[.]site
ads-fbstatistic[.]com
bizrateservices[.]com
towbarchat[.]com
teamsystems[.]info
j-queries[.]com

Registrant emails

anya.barber56@gmail[.]com
smithlatrice100@yahoo[.]com
rotrnberg.s4715@gmail[.]com
newserf@mail[.]ru

The post Web skimmer hides within EXIF metadata, exfiltrates credit cards via image files appeared first on Malwarebytes Labs.

Coughing in the face of scammers: security tips for the 2020 tax season

In spite of everything happening in the world right now—the 2020 tax season is about to come to an end, and taxes are due.

Americans got a reprieve back in March when the US Treasury Department and Internal Revenue Service (IRS) announced they were pushing back the federal income tax filing due date from April 15 to July 15, 2020. Fast forward three months and here we are, filing taxes during a worldwide health crisis and the most extreme social unrest the US has seen since the 1960s.

If only we could magically write off this entire year (like those Zoom calls with your therapist, aka “medical expenses”). And because time is relative, 2020 is absolutely the longest year in human history. Presidential election in November? I’ll die of old age before then.

While you’re preoccupied with, oh you know, avoiding serious illness and fighting for basic human rights, it’s business as usual for cybercriminals. Cybercrime tends to spike during tax season as scammers take advantage of all the valuable data floating around the Internet. These attacks follow a few tried and true methods, usually a phishing email or scam call from someone purporting to be from the IRS or an accountant offering to help you get a bigger refund.

This year, however, cybercriminals are exploiting the nation’s anxiety around COVID-19 and the increasingly grim economic outlook. The IRS has released multiple consumer alerts since shelter in place started back in March, warning Americans to be on the lookout for email and phone phishing attacks aimed at stealing refunds and Economic Impact Payments (EIP).

Beyond having your money stolen, tax ID theft can also damage your credit and cost you in time. It can take upwards of 600 hours to restore a stolen identity, according to the Identity Theft Resource Center.

Fortunately, protecting against the various tax season scams is relatively easy. All it takes is a little common sense and a basic understanding of the social engineering ploys scammers will try to use against you. With that said, here are some tried and true tips to help stay secure during this very unusual tax season.

For general tax preparedness

If you haven’t already filed, now’s the time to get a move on. Not only will you beat the rush, but you can ensure a faster return on your return. Mistakes, including those that can lead to identity theft, are made when you’re scrambling to dig up that charitable donation receipt from Goodwill five minutes before filing deadline.

Next, pick a preparer. Do your due diligence and check out any reviews or articles on tax software, if you plan to use it. Research online tax service providers to see how secure their systems are. Sites should have password standards, a lock-out feature that blocks users after too many unsuccessful login attempts, security questions, and email and/or text verification. If using an accountant, look for referrals. Remember that cheapest may not always be the best.

Finally, once you’ve filed, make sure to keep your tax returns someplace safe. If filing online, you’ll receive a massive PDF that you can download to your desktop. If someone were to access your computer a year from now, all that juicy information would be theirs for the taking. So be sure to either store it in an encrypted cloud service or put it on a removable drive, such as a USB. If filing on paper, keep your taxes in a locked file cabinet or drawer.

For online security

This is important for anyone transmitting sensitive data online, whether that’s shopping or filing taxes: be sure to use a connection that’s secure. If on a home computer and network, use password-protected Wi-Fi and look for properly-secured browsers (website URLs that start with “https” and display a small lock icon). Be sure your preparer has the same security in place. Never, ever, ever file your taxes using public Wi-Fi.

Ever.

In addition, when filing taxes online (and again, this applies to any online service that requires a password), choose passwords that are long and complex. Avoid plain text passwords, use special characters, and if allowed, use spaces. We also highly recommend a password vault or manager that uses two-factor authentication.

The third pillar of Internet security (especially during tax season) is to be aware of social engineering scams, including phishing emails. A popular phishing technique is to send an email from the “IRS” that says, essentially, “We have your tax return ready and you can get your money faster if you just download this PDF!” Nope. Number one, you should never open an attachment from an email you aren’t expecting to receive. Number two, the IRS will not email you. They’ll physically mail you information, but even then, be wary. Tax scams can happen via postal mail, too.

In addition to phishing attacks, there are reports of cold callers who say, essentially, “Hey, we’re from the IRS and you owe us $10,000.” Nope. The IRS won’t call you either. If you receive an email or phone call that’s unsolicited and is looking for personal information, don’t give it. Go back and independently verify who is trying to reach you.

Since shelter in place started back in March, criminals have been using a variety of phishing scams relating to coronavirus. Be wary of any emails purporting to be from the IRS or otherwise, throwing around the terms “coronavirus, “COVID-19,” and “stimulus.” Be especially wary of anyone claiming they can get you additional EIP money or a bigger refund.

After mastering the basics of online security, it’s a good idea to protect yourself using a little technology. Before you even start typing in your social security number, you should run at least one cybersecurity scan. That way, you’re sure there’s no malware on your system, such as a keylogger or spyware that can record your information without you knowing. You should also make sure your operating system, browser, and other software programs are updated—that way, you protect against malware that might exploit vulnerabilities in your computer.

Finally, if you believe there’s a chance you could have been compromised, look into free credit monitoring or ID theft services. (A caveat to this: Only use the free services, as paying for them is unnecessary and redundant with what credit card companies and banks are already doing.) By law, you are entitled to a free copy of your credit report from the major bureaus: Equifax, Experian, and Trans Union. In addition, there’s a lesser-known fourth bureau called Innovis that you can also use. Review your reports annually and look for any suspicious activity.

Filing early, being prepared, staying vigilant online, and employing the proper security technology—if you follow these tips then you can not only keep cybercriminals from cashing in on your tax returns but also from taxing your peace of mind.

The post Coughing in the face of scammers: security tips for the 2020 tax season appeared first on Malwarebytes Labs.

A zero-day guide for 2020: Recent attacks and advanced preventive techniques

Zero-day vulnerabilities enable threat actors to take advantage of security blindspots. Typically, a zero-day attack involves the identification of zero-day vulnerabilities, creating relevant exploits, identifying vulnerable systems, and planning the attack. The next steps are infiltration and launch. 

This article examines three recent zero-day attacks, which targeted Microsoft, Internet Explorer, and Sophos. Finally, you will learn about four zero-day protection and prevention solutions—NGAV, EDR, IPsec, and network access controls. 

What is a zero-day vulnerability?

Zero-day vulnerabilities are critical threats that are not yet publicly disclosed or that are only discovered as the result of an attack. By definition, vendors and users do not yet know about the vulnerability. The term zero-day stems from the time the threat is discovered (day zero). From this day a race occurs between security teams and attackers to respectively patch or exploit the threat first. 

Anatomy of a zero-day attack

A zero-day attack occurs when criminals exploit a zero-day vulnerability. The timeline of a zero-day attack often includes the following steps. 

  1. Identifying vulnerabilities: Criminals test open source code and proprietary applications for vulnerabilities that have not yet been reported. Attackers may also turn to black markets to purchase information on vulnerabilities that are not yet public. 
  2. Creation of exploits: Attackers create a kit, script, or process that enables them to exploit the discovered vulnerability.
  3. Identifying vulnerable systems: Once an exploit is available, attackers begin looking for affected systems. This may involve using automated scanners, bots, or manual probing. 
  4. Planning the attack: The type of attack that a criminal wants to accomplish determines this step. If an attack is targeted, attackers typically carry out reconnaissance to reduce their chance of being caught and increase the chance of success. For general attacks, criminals are more likely to use phishing campaigns or bots to try to hit as many targets as quickly as possible.
  5. Infiltration and launch: If a vulnerability requires first infiltrating a system, attackers work to do so before deploying the exploit. However, if a vulnerability can be exploited to gain entry, the exploit is applied directly. 

Recent examples of attacks

Effectively preventing zero-day attacks is a significant challenge for any security team. These attacks come without warning and can bypass many security systems. Particularly those relying on signature-based methods. To help improve your security and decrease your risk, you can start by learning about the types of attacks that have recently occurred.

Microsoft

In March 2020, Microsoft warned users of zero-day attacks exploiting two separate vulnerabilities. These vulnerabilities affected all supported Windows versions and no patch was expected until weeks later. There is not currently a CVE identifier for this vulnerability. 

The attacks targeted remote code execution (RCE) vulnerabilities in the Adobe Type Manager (ATM) library. This library is built into Windows to manage PostScript Type 1 fonts. The flaws in ATM enabled attackers to use malicious documents to remotely run scripts. The documents arrived through spam or were downloaded by unsuspecting users. When opened, or previewed with Windows File Explorer, the scripts would run, infecting user devices. 

Internet Explorer

Internet Explorer (IE), Microsoft’s legacy browser, is another recent source of zero-day attacks. This vulnerability (CVE-2020-0674) occurs due to a flaw in the way the IE scripting engine manages objects in memory. It affected IE v9-11.

Attackers are able to leverage this vulnerability by tricking users into visiting a website crafted to exploit the flaw. This can be accomplished through phishing emails or through redirection of links and server requests.

Sophos

In April 2020, zero-day attacks were reported against the Sophos’ XG firewall. These attacks attempted to exploit a SQL injection vulnerability (CVE-2020-12271) targeting the firewall’s built-in PostgreSQL database server.

If successfully exploited, this vulnerability would enable attackers to inject code into the database. This code could be used to modify firewall settings, granting access to systems or enabling the installation of malware. 

Protection and prevention

To properly defend against zero-day attacks, you need to layer advanced protections on top of your existing tools and strategies. Below are a few solutions and practices designed to help you detect and prevent unknown threats. 

Next-generation antivirus

Next-generation antivirus (NGAV) expands upon traditional antivirus. It does this by including features for machine learning, behavioral detection, and exploit mitigation. These features enable NGAV to detect malware even when there is no known signature or file hash (which traditional AV relies on). 

Additionally, these solutions are often cloud-based, enabling you to deploy tooling in isolation and at scale. This helps ensure that all of your devices are protected and that protections remain active even if devices are affected.

Endpoint detection and response

Endpoint detection and response (EDR) solutions provide visibility, monitoring, and automated protections to your endpoints. These solutions monitor all endpoint traffic and can use artificial intelligence to classify suspicious endpoint behaviors, like, for example, to frequent requests or connections from foreign IPs. These capabilities enable you to block threats regardless of the attack method. 

Additionally, EDR features can be used to track and monitor users or files. As long as the tracked aspect behaves within normal guidelines, no action is taken. However, as soon as behavior deviates, security teams can be alerted. 

These capabilities require no knowledge of specific threats. Instead, capabilities leverage threat intelligence to make generalized comparisons. This makes EDR effective against zero-day attacks. 

IP security

IP Security (IPsec) is a set of standard protocols used by Internet engineering task forces (IETFs). It enables teams to apply data authentication measures, and to verify integrity and confidentiality between connection points. It also enables encryption and secure key management and exchange. 

You can use IPsec to authenticate and encrypt all of your network traffic. This enables you to secure connections and to quickly identify and respond to any non-network or suspicious traffic. These abilities enable you to increase the difficulty of exploiting zero-day vulnerabilities and decrease the chance that attacks are successful. 

Implement network access controls

Network access controls enable you to segment your networks in a highly granular way. This allows you to define exactly which users and devices can access your assets and through what means. This includes restricting access to only those devices and users with the appropriate security patches or tooling. 

Network access controls can help you ensure that your systems are protected without interfering with productivity or forcing complete restriction of external access. For example, the type of access needed when you host software as a service (SaaS). 

These controls are beneficial for protecting against zero-day threats because they enable you to prevent lateral movement in your networks. This effectively isolates any damage a zero-day threat may cause. 

Staying safe

Recent zero-day attacks show that more and more threat actors find an easy mark in endpoint users. The zero-day attack on Microsoft exploited ATM vulnerabilities to trick users into opening malware. When threat actors exploited an Internet Explore zero-day vulnerability, they tricked users into visiting malicious sites. The zero-day attack on Sophos could potentially grant user access to threat actors. 

However, while zero-day attacks are difficult to predict, it is possible to prevent and block these attacks. EDR security enables organizations to extend visibility into endpoints, and next-generation antivirus provides protection against malware without having to rely on known signatures. IPsec protocols enable organization to authenticate and encrypt network traffic, and network access controls provide the tools to deny access to malicious actors. Don’t let threat actors have the upper hand. By utilizing and layering several of these tools and approaches, you can better protect your employees, your data, and your organization.

The post A zero-day guide for 2020: Recent attacks and advanced preventive techniques appeared first on Malwarebytes Labs.

Lock and Code S1Ep9: Strengthening and forgetting passwords with Matt Davey and Kyle Swank

This week on Lock and Code, we discuss the top security headlines generated right here on Labs and around the Internet. In addition, we talk to Matt Davey, chief operations optimist at 1Password, and Kyle Swank, a member of 1Password’s security team, about—what else—passwords.

We may know it’s important to have a strong, non-guessable, lengthy password, and yet we still probably all know someone who writes their password on a post-it, which is then affixed literally onto their machine. On today’s episode, we discuss secure passwords, password alternatives, and the future—and potential death—of passwords.

Tune in for all this and more on the latest episode of Lock and Code, with host David Ruiz.

You can also find us on the Apple iTunes storeGoogle Play Music, and Spotify, plus whatever preferred podcast platform you use.

We cover our own research on:

  • End of Line: We look at what happens in a world where your expensive home devices can lose support without much warning
  • Facial recognition technology: We provide a rundown on which companies recently decided to not provide the technology to law enforcement.

Plus other cybersecurity news:

  • Business email compromise: scam email trends in the age of Coronavirus (Source: Help Net Security)

Stay safe, everyone!

The post Lock and Code S1Ep9: Strengthening and forgetting passwords with Matt Davey and Kyle Swank appeared first on Malwarebytes Labs.

Facial recognition: tech giants take a step back

Last week, a few major tech companies informed the public that they will not provide facial recognition software to law enforcement. These companies are concerned about the way in which their technology might be used.

What happens when software that threatens our privacy falls into the hands of organization which we no longer trust? In general, being aware of tracking software causes a feeling of being spied on and a feeling of insecurity. This insecurity that spreads throughout society is likely causing these companies to revise their strategy. Current developments surely have had an impact on an already distorted social environment. A pandemic and worldwide protests are a mix we have never experienced before in human history.

Definition of facial recognition

The definition of facial recognition, or “face recognition” as the Electronic Frontier Foundation (EFF) defines it, is:

A method of identifying or verifying the identity of an individual using their face. Face recognition systems can be used to identify people in photos, video, or in real-time.

Facial recognition is one of the technologies that even laymen can understand in how it can be used against citizens by a malevolent or untrustworthy government. Other methods like social profiling and behavioral analysis are more elusive and less easy to comprehend.

In an earlier blog, we already discussed the very different rules, laws and regulations that exist around the world when it comes to facial recognition. Depending on the type of government and the state of technology, the rules are very different—or they don’t exist at all.

The stated bans by Amazon, IBM, and Microsoft announced over the course of one week, however, were more or less directly aimed at US organizations, perhaps as a result of a growing distrust about local law enforcement agencies in general and due to the behavior of some police departments in particular. But we can likely expect these bans to spread out across the world. (And I think that is a good thing.) Laws have a tendency to follow the developments in society, always trailing one step behind. But in this case it looks important enough to wait until the development and legislature can go hand in hand.

The companies

Microsoft halted the sale of facial recognition technology to law enforcement in the US, stating that the ban would stick until federal laws regulating the technology’s use were put into place. In other words, they want to have rules in place for the use of the technology before they provide it.

Amazon, which is potentially one of the biggest players in this space, has their own custom tech called Rekognition. It’s being licensed to businesses and law enforcement. Earlier on, Amazon had already announced a similar ban for very much the same reason, letting the public know that it would require “stronger regulations to govern the ethical use of facial recognition technology.”

IBM did not limit the ban to the US but it did explain their motives in a letter to Congress. In this letter the company addressed the subject by writing it had no plans to market facial recognition software if it would be used “for mass surveillance, racial profiling, violations of basic human rights and freedoms, or any purpose which is not consistent with our values and Principles of Trust and Transparency.”

Why we do not want facial recognition

Many groups like American Civil Liberties Union (ACLU) and EFF have made objections against this technology as it is considered a breach of privacy to use biometrics to track and identify individuals without their consent. Many feel that there is already more than enough technology out there that keeps track of our behavior, preferences, and movement. The technology does not necessarily always know who we are down to the level of personally identifiable information (PII). Many people get uneasy when they find out how well aware advertisers and shops are of our preferences by tracking our browsing habits and online purchases.

And some incidents certainly don’t help the case at all. For example, the Baltimore police department reportedly ran social media photos through face recognition to identify protesters and arrest them.

Another example of using this technology for a purpose separate than what it was intended for—and also another possible reason for distrust—was the fact that Minnesota police resorted to what it called “contact-tracing” demonstrators arrested after recent protests. But “contact tracing” is a public health effort to help stop the spread of disease like the COVID-19 outbreak. As it turns out, the Minnesota police are looking at it as a model for criminal investigations.

Facial recognition still has its limits

Another objection against facial recognition technology has always been the inaccuracy. There are significant risks that facial recognition used in law enforcement is unreliable.

Most facial recognition software relies on Artificial Intelligence (AI) and, more precisely, Machine Learning (ML). Where facial recognition relies on machine learning the training data is often incomplete or unrepresentative of the general population. A study from MIT Media Lab shows that facial recognition technology works differently across gender and races. In cases where misidentification can lead to arrest or incarceration, we will surely want to avoid such grave errors due to false positives.

Will we ever be ready for facial recognition to be used by law enforcement?

What surely will need to happen is that law enforcement regains the trust of the public in general and that laws regulating the use of facial recognition software will be made effective to satisfy the demands of the manufacturers of facial recognition software.

Whether that means we can lie back and rely on the forces at work to do the right thing is a whole other topic. A large majority of humanity seems to be torn between “I have nothing to hide” and “they already know everything” anyway. That is not a healthy situation and the degree of unease largely depends on which country you happen to live in and many other circumstances beyond your control.

So, even though the chances of facial recognition getting widely used by law enforcement seem to be put on a lower level in the US, this remains a topic to keep an eye on if you value your privacy.

The post Facial recognition: tech giants take a step back appeared first on Malwarebytes Labs.

End of line: supporting IoT in the home

Trouble is potentially brewing in Internet of Things (IoT) land, even if the consequences may still be a little way off. System updates and issues surrounding expiring certificates will pose problems for manufacturers and headaches for consumers.

System updates for fun and profit

One of the first mainstream collisions of putting updates out to pasture and angry device owners yelling “Why doesn’t this work anymore” was probably at the tail end of 2019 and involved streaming giant Netflix. If you have internet connected devices, then those devices will require updating. It may be a security issue, it could be a UI redesign, perhaps the code deep down in the guts between the backend and what you see in front of you has had a change cascading its way through how everything operates.

People realised this very quickly when Netflix started letting people know their TVs would no longer work quite how they had previously. This approach makes sense; there’s only so much you can do with older bits and pieces of hardware with regards the ever-present march of the new. At some point, it simply won’t be able to cut the mustard and then (best case scenario) you’re having to fall back on third party apps instead of official solutions. That could end up being a security risk all by itself.

Not so smart device?

White goods like fridges, freezers, and more general kitchen equipment around the home, are usually pretty expensive. Devices with IoT tech in them, even more so. You’re paying a premium for functionality you may not use that often. It’s likely some folks buy IoT devices for the home without even knowing they possess said capability. It’d certainly go some way to explaining why so many of these things are found online, unsecured, with no password (or a fixed password easily Googled).

Into this hot mess steps a number of expectations; primarily among them, how long you can expect the device to be supported.  We’re not talking about apps allowing you perform smaller tasks now, so much as we are raising expectations about core functionality. Namely: how long will manufacturers ensure our IoT device, all hooked up to the big wide web, keep ticking over. Not only in terms of “does it work”, but also “is it still secure?”

As always, the devil is in the details (or at least some additional information).

Mapping out the end times

Planned obsolesce is something that’s been around in tech circles for years. The basic idea is to keep making money by building in some form of limited shelf life into a device, in a way which makes you continually fork over some cash above  and beyond the original purchase…because  you’re now onto the next one…and the one after that…and the latest model does a handful of new things,  so you’d better buy that too…

You get the idea. Design cycles become shorter, new product releases are rushed out the door, potentially filled with bugs, leaving you to wonder if the new additions could’ve been included in the product you already own.

The addition of more new and intricate technology in white goods is arguably adding to the list of things which could break and/or go wrong over time. Reliance on the ever-shifting sands of the Internet also means things will simply go out of date a lot faster than if it were a plain old washing machine, tumble drier, or fridge.

It’s wise not to become too wrapped up in conspiracy theories on this subject; some caution is advised. By the same token, this is absolutely a thing that happens and major organisations have caught some heat for it.

Even so, we’re now at a point where IoT is firmly established in homes whether we like it or not. More of our devices are becoming internet connected; even if you purposely go out of your way to avoid it, chances are you’ll begrudgingly get stuck with it at some point. For most people in that situation, it tends to end up being a television set. However, the IoT sky is the limit and it could be pretty much anything, really.

Behold my impressive collection of legal documents

At this point, we’re at warranties and guarantees. These can differ greatly with regards to protection depending on where you live, but they are typically tied to laws relevant to your area. You’d think it’d be straightforward; in actual fact, it’s more along the lines of Cole Porter singing Anything Goes as he desperately tries to make sense of 600 pages of legalese.

More often than not, the extended warranty is what offers the most protection. It’s also the one which involves handing over more money, registering on the website, sending off a card, or just forgetting to do any of those previously mentioned then panicking when the toaster explodes.

With all new IoT tech inside your washing machine, you may well be more likely to want extra protection in the event of things going wrong. One slight annoyance, Cole Porter yells from behind his impressive correction of legal documents: will that fancy extended 7-year warranty outlive the IoT tech in your fridge?

Going back to the above article, it’s all a bit worryingly vague. When asked how long support can be expected, answers range from “issued as required,” to “up to ten years,” and at least one vendor who said “a maximum of two years,” with the not massively reassuring caveat that support is not limited to two years.

Glad we’ve cleared that one up, then. Thanks, Cole.

As per the “Which report?” advice, you may have to start asking manufacturers exactly how long IoT tech in a device will be supported versus the length your warranty runs for. Good luck.

Be certain with your certificates

SSL certificates help keep the web safe by firing up the old encryption cannon and ensuring everything you do is kept from prying eyes, be it regular browsing, online banking, gaming, or just streaming some TV shows. The problem is, lots of those certificates are due to expire in the next few years and all of those IoT devices in your home making use of them could be caught in the fallout.

Such a thing impacted users of Roku, who found an expiring certificate broke their service. More general warnings of certificate expiration peg the next big fallout sometime around the tail end of 2021. I, for one, am looking forward to the immense joy gleaned from being told by text that the SSL certificate on my fridge freezer has expired and I’ll have to fix it myself.

A televisual turning point

With all of the above becoming things for a harried shopper to consider, it’s worth remembering that the smart in some devices gives manufacturers additional valuable data on people buying their things. I hope you like adverts the moment you fire up your TV, or the big box in your front room watching pretty much everything you do related to it.

It’s in their interest to push digital into as many devices as possible, and claims from manufacturers already exist that stripping the previously not included smart tech from devices, would make said devices more expensive. Put simply: it isn’t going away anytime soon.

Warranties which may not warranty, certificates which might fail to certify, lifespans which don’t match the length of cover promised, and data harvested from advertisements to try and upsell more smart tech. That’s the current lie of the land when you next go out to replace that 5 year old fridge in need of patching up.

Should you figure it out, please let us know – I think we’d all appreciate the helping hand.

The post End of line: supporting IoT in the home appeared first on Malwarebytes Labs.

Multi-stage APT attack drops Cobalt Strike using Malleable C2 feature

This blog post was authored by Hossein Jazi and Jérôme Segura

On June 10, we found a malicious Word document disguised as a resume that uses template injection to drop a .Net Loader. This is the first part of a multi-stage attack that we believe is associated to an APT attack. In the last stage, the threat actors used Cobalt Strike’s Malleable C2 feature to download the final payload and perform C2 communications.

This attack is particularly clever for its evasion techniques. For instance, we observed an intentional delay in executing the payload from the malicious Word macro. The goal is not to compromise the victim right away, but instead to wait until they restart their machine. Additionally, by hiding shellcode within an innocuous JavaScript and loading it without touching the disk, this APT group can further thwart detection from security products.

Lure with delayed code execution

The lure document was probably distributed through spear phishing emails as a resume from a person allegedly named “Anadia Waleed.” At first, we believed it was targeting India but it is possible that the intended victims could be more widespread.

resume
Figure 1: Resume

The malicious document uses template injection to download a remote template from the following url:

https://yenile[.]asia/YOOMANHOWYOUDARE/indexb.dotm

templateinjection
Figure 2: Template injection

The domain used to host the remote template was registered on February 29, 2020 by someone from Hong Kong. Creation time for the document is 15 days after this domain registration.

The downloaded template, “indexa.dotm”, has an embedded macro with five functions:

  • Document_Open
  • VBA_and_Replace
  • Base64Decode
  • ChangeFontSize
  • FileFolderExist.

The following shows the function graph of the embedded macro.

Figure 3: Macro functions graph

The main function is Document_open which is executed upon opening the file. This function drops three files into the victim’s machine:

  • Ecmd.exe: UserForm1 and UserForm2 contain two Base64 encoded payloads. Depending on the version of .Net framework installed on the victim’s machine, the content of UserForm1 (in case of .Net v3.5) or UserForm2 (other versions) is decoded and stored in “C:ProgramData”.
  • cf.ini: The content of the “cf.ini” file is extracted from UserForm3 and is AES encrypted, which later on is decrypted by ecmd.exe.
  • ecmd.exe.lnk: This is a shortcut file for “ecmd.exe” and is created after Base64 decoding the content of UserForm4. This file is dropped in the Startup directory as a trigger and persistence mechanism.

Ecmd.exe is not executed until after the machine reboots.

Document open
Figure 4: Document_Open
base64
Figure 5: Custom Base64 decode function

ChangeFontSize and VBA_and_Replace functions are not malicious and probably have been copied from public resources [1, 2] to mislead static scanners.

Intermediary loader

Ecmd.exe is a .Net executable that pretends to be an ESET command line utility. The following images show the binary certificates, debugger and version information.

The executable has been signed with an invalid certificate to mimic ESET, and its version information shows that this is an “ESET command line interface” tool (Figure 6-8).

cetificate 2
Figure 6: Certificate information
fileversion
Figure 7: Version information
pdb
Figure 8: Debugger information

ecmd.exe is a small loader that decrypts and executes the AES encrypted cf.ini file mentioned earlier. It checks the country of the victim’s machine by making a HTTP post request to “http://ip-api.com/xml“. It then parses the XML response and extracts the country code.

ip api
Figure 9: Getcon function: make http post request to “ip-api.com”
ip api output
Figure 10: ip-api.com output

If the country code is “RU” or “US” it exits; otherwise it starts decrypting the content of “cf.ini” using a hard-coded key and IV pair.

main
Figure 10: ecmd.exe main function

The decrypted content is copied to an allocated memory region and executed as a new thread using VirtualAlloc and CreateThread APIs.

fp run
Figure 11: runn function

ShellCode (cf.ini)

A Malleable C2 is a way for an attacker to blend in command and control traffic (beacons between victim and server) with the goal of avoiding detection. A custom profile can be created for each target.

The shell code uses the Cobalt Strike Malleable C2 feature with a jquery Malleable C2 profile to download the second payload from “time.updateeset[.]com”.

image 1
Figure 12: Malleable C2 request

This technique has been used by two other recent Chinese APTs—Mustang Panda and APT41.  

The shellcode first finds the address of ntdll.exe using PEB and then calls LoadLibrayExA to load Winint.dll. It then uses InternetOpenA, InternetConnectA, HttpOpenRequestA, InternetSetOptionA and HttpSendRequestA APIs to download the second payload.
The API calls are resolved within two loops and then executed using a jump to the address of the resolved API call.

loop api
Figure 13: Building API calls

The malicious payload is downloaded by InternetReadFile and is copied to an allocated memory region.

internetreadfile
Figure 14: InternetReadFile

Considering that communication is over HTTPS, Wireshark is not helpful to spot the malicious payload. Fiddler was not able to give us the payload either:

fiddler
Figure 15: Fiddler output

Using Burp Suite proxy we were able to successfully verify and capture the correct payload downloaded from time.updateeset[.]com/jquery-3.3.1.slim.min.js. As can be seen in Figure 16, the payload is included in the jQuery script returned in the HTTP response:

Screen Shot 2020 06 16 at 5.50.34 PM
Figure 16: Payload happened to the end of jquery

After copying the payload into a buffer in memory, the shellcode jumps to the start of the buffer and continues execution. This includes sending continuous beaconing requests to “time.updateeset[.]com/jquery-3.3.1.min.js” and waiting for the potential commands from the C2.  

image 2
Figure 17: C2 communications

Using Hollow Hunter we were able to extract the final payload which is Cobalt Strike from ecmd’s memory space.

Attribution

A precise attribution of this attack is a work in progress but here we provide some insights into who might be behind this attack. Our analysis showed that the attackers excluded Russia and the US. The former could be a false flag, while the latter may be an effort to avoid the attention of US malware analysts.

As mentioned before, the domain hosting the remote template is registered in Hong Kong while the C2 domain “time.updateeset[.]com” was registered under the name of an Iranian company called Ehtesham Rayan on Feb 29, 2020. The company used to provide AV software and is seemingly closed now. However, these are not strong or reliable indicators for attribution.

Screen Shot 2020 06 13 at 3.22.10 PM
Figure 11: updateeset.com whois registration information

In terms of TTPs used, Chinese APT groups such as Mustang Panda and APT41 are known to use jQuery and the Malleable C2 feature of Cobalt Strike. Specifically, the latest campaign of Mustang Panda has used the same Cobalt Strike feature with the same jQuery profile to download the final payload which is also Cobalt Strike. This is very similar to what we saw in this campaign, however the initial infection vector and first payload are different in our case.

detection 1

IOCs

Anadia Waleed resume.doc
259632b416b4b869fc6dc2d93d2b822dedf6526c0fa57723ad5c326a92d30621

Remote Template: indexa.dotm
7f1325c5a9266e649743ba714d02c819a8bfc7fd58d58e28a2b123ea260c0ce2

Remote Template Url:
https://yenile[.]asia/YOOMANHOWYOUDARE/

C2:
time.updateeset[.]com

Ecmd.exe:
aeb4c3ff5b5a62f5b7fcb1f958885f76795ee792c12244cee7e36d9050cfb298
dcaaffea947152eab6572ae61d7a3783e6137901662e6b5b5cad82bffb5d8995
5f49a47abc8e8d19bd5ed3625f28561ef584b1a226df09d45455fbf38c73a79c

cf.ini:
0eba651e5d54bd5bb502327daef6979de7e3eb63ba518756f659f373aa5f4f8b

Cf.ini shell-code after decryption:
5143c5d8715cfc1e70e9db00184592c6cfbb4b9312ee02739d098cf6bc83eff9

Cobalt Strike downloaded shellcode:
8cfd023f1aa40774a9b6ef3dbdfb75dea10eb7f601c308f8837920417f1ed702

Cobalt Strike payload
7963ead16b6277e5b4fbd5d0b683593877d50a6ea7e64d2fc5def605eba1162a

The post Multi-stage APT attack drops Cobalt Strike using Malleable C2 feature appeared first on Malwarebytes Labs.

VPNs: should you use them?

We are going to talk today about something you’ve likely heard of before: VPNs, or Virtual Private Networks. We at Malwarebytes have delved into these tools in greater depth, and we’ve literally discussed them on the digital airwaves.

But we want to answer a question we’ve been getting more and more. Folks aren’t as curious about what a VPN is anymore, as they are about whether they should use one.

The answer is: it depends. For that, we’re here to help.

How a VPN works

To understand how a VPN works and whether you should use one, it is best to first understand what happens when you’re browsing the Internet. Whenever you open up a web browser and go to a website, you’re connecting to that website and exchanging information with it. This is your Internet “traffic,” and it can reveal quite a bit of information about you, including what websites you visit, your IP address, and more.

A VPN acts like a “tunnel” for your Internet traffic. Your traffic goes into the tunnel, and emerges out of one of the exit nodes of the VPN service. The tunnel encrypts your data, making it undecipherable to your Internet Service Provider (ISP). At best, your ISP can see that some encrypted traffic is going to a VPN service, but not the contents of that traffic, and not where it comes out of.

The interesting thing to note here is that, with this basic functionality, a VPN can actually serve many different needs. As we wrote before:

Depending on who you ask, a VPN is any and all of these: [1] a tunnel that sits between your computing device and the Internet, [2] helps you stay anonymous online, preventing government surveillance, spying, and excessive data collection of big companies, [3] a tool that encrypts your connection and masks your true IP address with one belonging to your VPN provider, [4] a piece of software or app that lets you access private resources (like company files on your work intranet) or sites that are usually blocked in your country or region.

Without a VPN, your Internet Service Provider, or ISP, can see almost everything you interact with online. Who you connect to, what type of traffic, where you are geographically. No bueno.

Obscuring your traffic with a VPN

If you use a VPN, your ISP knows you’ve connected to a VPN, but it cannot inspect the content of your traffic, and does not know where it comes out at the other end.

Also, despite the recent surge in popularity for VPNs, these tools have been in use for businesses for a long time now. They are typically used to access resources remotely as if you were at the office.

In some cases we have even seen performance boosts by using a VPN, where artificial throttling is circumvented by the use of a VPN. Because you’re tunneling your connection, your ISP can’t peek at your traffic and throttle it, based on the kind of traffic. Believe it or not, this is a real issue, and some ISPs throttle users’ traffic when they see file sharing for example.

Consumer recommendations

There are several paths you can take when deciding to implement a VPN. Not only do these tools works on your personal devices like your laptops and mobile phones, but, in some cases, you can insert your own router into the mix.

In many cases, the router provided by your ISP is not a device that you fully control, and using it for your networking needs might open you to possible security issues.

These devices sometimes have administrative functions that aren’t accessible to subscribers. Some mid to higher range routers offered on the market today allow you to put the VPN on the router, effectively encapsulating all your traffic.

The hardware route

A possible solution would be to get such a router and install the VPN on it, rather than on your individual machines. This has the added bonus that it provides VPN protection to devices that don’t support VPNs, like handhelds, consoles, and smart devices.

In the past, we have seen ISP hardware breached by hard coded accounts on the modem/routers they offer to their subscribers.

Sadly, ISP customer support often balks at helping out if you insert your own equipment in the mix. (In fact, they might make you remove it from the equation before they’ll provide support.)

This solution is specific to each router, and a bit more advanced.

The software route

You can also use a VPN application provided by the VPN provider. This application will provide VPN tunneling to the computer it is installed on, and only that, so keep that in mind.

One of the strongest options to consider for your software solution is a “kill switch” functionality. This ensures that if anything happens to the VPN application, it doesn’t “fail open” or allow internet traffic through if the VPN is broken. Think about it. You’re installing this application for the explicit functionality that it can tunnel your traffic. If the app malfunctions, there might be privacy risks in the app still allowing you to connect to the Internet, but letting your traffic go un-tunneled.

More than anything, a kill switch prevents the chance that you’re operating with a false sense of security. What you say online, and the chance that it was you who said it, can draw attention in some countries with far stricter laws on free speech.

Another factor that makes a VPN really perform is when they have a lot of exit nodes. These exit nodes are locations that can be used to circumvent geolocation. The more that are available, and the greater the variety, the more versatile and useful the VPN service is.

Speed is also a factor for VPN exit nodes. There’s not much point in having a ton of exit nodes unless they’re fast. One of the drawbacks of using a VPN is that by adding all these “hops” between nodes, your traffic will take longer to route. If the nodes are reasonably fast, the end user shouldn’t notice significant slowdowns.

You should have a VPN provider that doesn’t discriminate the type of traffic that flows through their network. Some smaller VPNs don’t have the necessary infrastructure to handle large volumes of Peer-to-peer or bittorrent traffic, and either ban it outright or have actual data caps.

Final thoughts

Remember, when you’re thinking about adopting one of these tools, you’re transferring trust: When you use a VPN you transfer access to your traffic to a 3rd party, the VPN provider. All that visibility that users balk at relinquishing to their ISP has now been handed over to their VPN provider. Careful consideration should be given to the trustworthiness of said VPN provider.

There are documented cases where a VPN provider revealed that their users could be de-anonymized and that the VPN provider did in fact keep logs and was willing to turn them over.

Remember, VPNs should not be viewed as shadowy tools. They are, in all actuality, business and privacy tools. They let the researchers who fight malware find out what that malware actually does. They let employees connect to company resources away from the office—which is of the utmost importance today. And they allow you, the user, to reclaim a measure of privacy.

It is therefore important to choose carefully. Most VPNs offer a service where they promise not to log or inspect your traffic. In many cases, though, this claim is impossible to verify.

The best option for VPNs, then? Read reviews, scour forums, and look for the functionalities that are important, specifically, to you. You may find what you’re looking for just around the corner.

The post VPNs: should you use them? appeared first on Malwarebytes Labs.

A week in security (June 8 – 14)

Last week on Malwarebytes Labs, we looked into nasty search hijackers that worried a lot of Chrome users; a list of considerations for MSPs when looking for an RMM platform; the complaint faced by ParetoLogic, the company that issues SpeedyPC, a product that claims to find and remove various PC errors; and a ransomware attack that affected car manufacturers like Honda and Enel.

Other cybersecurity news

Stay safe, everyone!

The post A week in security (June 8 – 14) appeared first on Malwarebytes Labs.